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Formulaire de rhéologie 
 
Rhéologie des solides   –   modèles viscoélastiques 
 

ressort amortisseur 
 

 
 

 

 
 

 
 

 Modèle de Maxwell (série) Modèle de Kelvin (parallèle) 
 

Equation 
constitutive  

 
 

Fluage     où    ts = h/E     où    ts = h/E
 

Recouvrance e (t > t1) = constante  

 
Relaxation     où    te = h/E s (t) = constante 

Modèle SLSM

 
 

Equation constitutive : 
 
 
 
 
 
Fluage :                                                                               Relaxation :  
 
 
Recouvrance de la déformation (pour t > t1) :   

   
 

 
Formules générales (Boltzmann) 
 
Sollicitation en contrainte :                                      où    J(t) = J + JV(t)    avec    J = 1/ER 
 
Sollicitation en déformation :                                      où    R(t) = ER + RV(t) 

 
Essais harmoniques  
 

 
 
Module de stockage                       ;  module de perte                        ; module complexe                             ; 
 
Viscosités : 
 
SLSM sous contrainte sinusoïdale : 

  
 

   
(les relations J’ = 1/E’ et J" = 1/E" sont des approximations, valables loin de la ‘fréquence de résonance’ w = 1/ts) 
 

SLSM sous déformation sinusoïdale :  
 
 

  
 
Energie dissipée par cycle par unité de volume :  
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Représentation complexe 
 
Sollicitation : e  =  e0  exp{iw t}, réponse : s  =  s0  exp{i(w t + d )} 
 
Modules apparents : 
 
 
Modèles rhéologiques 
 
Maxwell généralisé :                                             Kelvin généralisé :  
 
 
KWW :  
  
 
Equivalence temps – température 
 

 

 

 
 
T < Tg (Arrhenius) : 
 
 
Tg < T < Tg + 100°C (WLF) :   

 
Rhéologie des liquides   –   loi constitutives 
 
Fluide Newtonien :   où la viscosité h est indépendante de la vitesse de cisaillement 𝛾̇ 
 
Fluide non-Newtonien :               où la viscosité h dépend de la vitesse de cisaillement 𝛾̇ 
 
Loi de puissance :    
 

Modèle de Carreau Modèle de Carreau-Yashuda Modèle de Cross Modèle de Ellis 

    
 
Influences de la température T et de la pression P (A, a, D constantes, Ea énergie d’activation, c compressibilité) : 
 

 
 
Ecoulements de fluides incompressibles (coordonnées cartésiennes) 
 

Equation de conservation de la masse :  

Equation de Navier-Stokes : 

Projection sur x :  

Projection sur y :  

Projection sur z :  

log t
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Cisaillement Poiseuille dans conduite rectangulaire 

 
 

 

 
 
Fluide newtonien :  
 

Fluide loi de puissance : 
 
 
 

 
Ecoulements de fluides incompressibles (coordonnées cylindriques) 
 

Equation de conservation de la masse :   

Navier-Stokes : 
Projection sur r :   
 
 
Projection sur q  :  
 
 
Projection sur x :   
 
 

Ecoulement de Poiseuille dans une conduite circulaire (fluide Newtonien, gradient de pression selon x) : 
 
   
 
Ecoulement de Poiseuille dans une conduite circulaire (fluide loi de puissance, gradient de pression selon x) : 

ux(r) = 
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Rhéomètres 
 
 

Equation de Bagley :                                            représente le facteur de correction 
 
Equation de Rabinowitsch (capillaire) :  

  
Couette (Newtonien) 

(gap d, rayon R, longueur L, couple M, vitesse w) 
Cône-plaque (Newtonien)  

(angle a, rayon R, couple M, vitesse w) 
Plaques parallèles (Newtonien)  

(gap d, rayon R, couple M, vitesse w) 

   
 
Mécanique des fluides 
 

Nombre de Reynolds : Re < 1000 laminaire (si < 1, écoulement à faible Reynolds, ou de Stokes) 
(vitesse du fluide V, densité r, viscosité h,  103 < Re<104 transition 
dimension caractéristique de l’écoulement d) 104 < Re < 106 turbulent, dépend de Re 
 106 < Re, très turbulent, ne dépend plus de Re 

Hauteur piézométrique (conduite cylindrique de rayon R = D/2 et longueur L) :  

Rayon hydraulique : Rh = A/P (A : aire ; P : périmètre) 

Frottement :                                                                                 où e : rugosité ;  f = 64/Re (écoulement laminaire) 
 
Equation de Colebrook :                                                            Equation de Haaland :  
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Ecoulement autour de corps immergés  
 

Couche limite d (lieu ou la vitesse vaut 0.99 de la vitesse moyenne de l'écoulement V) : 

Cas laminaire :                                                   ;  cas turbulent (valable quand le corps n'est pas rugueux) :  
 

Coefficient de trainée :                         ;    Coefficient de portance :  
 
(Fdrag, Flift forces de trainée et de portance, u vitesse de l’écoulement, A aire vue par l'écoulement ; attention ces coefficients dépendent de Re, mais 
sont à peu près constants pour Re > 10'000) 
 
Loi de Stokes : F = 6h p VL (V vitesse du fluide, L taille du corps immergé) valable pour Re < 1 
 
Rhéologie des fluides complexes   –   forces d’interaction 
 

Coefficient de diffusion Brownien (taille des particules a) :  
 
Forces de Van der Waals entre 2 sphères (d : diamètre, h : séparation, A : Constante de Hamacker) :                                      
 
Nombre de Péclet :  
 
Nombre NH/vdW (rapport des forces hydrodynamique et de van der Waals)  
 
Potentiel électrostatique :                                                         est la longueur de Debye 
 
Rhéologie des suspensions 
 
Suspension diluée (concentration volumique f  < 2% ; Einstein) :                            où ke = 2.5 pour des sphères 
 
Suspension semi-concentrée (2% < f   < 10%) :   où kH  = 7.6 si élongationnel 
  5.2 si cisaillement 
 
Modèle de Mooney                                     où f max = 0.56 à 0.64 pour des sphères 
 
 
Suspension concentrée (f   > 10% ; Krieger-Dougherty) :                                     
([h] viscosité intrinsèque = 2.5 et f max = 0.56 à 0.64 pour des sphères) 
 
Ellipsoïdes (axes a, b ; équation de Simba) :  
ar = a/b et l = 1.5 (1.8 pour une fibre) 
 
Modèle de Bingham :                                                                                           où hN est la viscosité newtonienne 
 
Modèle de Herschel-Bulkley :  
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